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1. Definitions

An Exterior Differential System (EDS) is a pair (M, I) with M a smooth manifold and
differential ideal I ⊆ Ω∗(M). By differential ideal I mean a graded ideal in the ring Ω∗(M)
of differential forms on M which is furthermore closed under exterior differentiation.

Given such an (M, I), we are usually interested in finding integral submanifolds,
i : N ↪→ M so that i∗φ = 0 for all φ ∈ I. In other words, submanifolds so that
I|TN = 〈0〉.1 The solutions to this problem will, for appropriately constructed (M, I),
correspond to solutions to interesting PDE or geometric problems.

Conveniently, there are very powerful tools developed in EDS which turn this existence
problem into one of linear algebra and counting dimensions.

2. How to go from a PDE to an EDS

Example. Consider the ODE

dx

dt
= F (t, x, y)

dy

dt
= G(t, x, y)

with F,G smooth functions on R3. We can represent a solution i : (a, b) → R2 to this
system as an appropriate curve in R×R2, namely the graph of i. Conversely, we would like
to develop an EDS whose integral curves are graphs of solutions. From the first equation
we must have2 dx = F (t, x, y)dt and similarly from the second we have dy = G(t, x, y)dt on
such a curve. This suggests we consider the EDS (R3, I) where I = 〈dx− Fdt, dy −Gdt〉.

Indeed, an integral curve S ⊂ R3 will have tangent space at each point spanned by a
vector a ∂

∂t
+b ∂

∂x
+c ∂

∂y
, and the requrement that I restrict to zero on this space shows that

the vector is parallel to ∂
∂t

+ F ∂
∂x

+ G ∂
∂y

, which says exactly that S is in fact a solution

to the ODE.

Example. Now consider the PDE

zx = F (x, y, z)

zy = G(x, y, z).

This can be modeled by (R3, I) where I = 〈dz − Fdx−Gdy〉. It is not hard to see3 that
an integral surface can be written (locally) as a graph z = u(x, y). If we consider the

1This is why we ask that I be closed under differentiation: if φ|TN = 0 then so must dφ|TN = 0
2Here I should more accurately say, for example, i∗dx = F (t, x(t), y(t))i∗dt, but in practice it should

be clear when a form is restricted to a submanifold.
3Indeed, we have dx∧ dy 6= 0, for otherwise the condition dz = Fdx+Gdy tells us that all 3 of dx, dy

and dz are pairwise dependent.



tangent plane of this graph, spanned by ∂
∂x

+ ux
∂
∂z

and ∂
∂y

+ uy
∂
∂z

, we see that

ux(x, y) = F (x, y, u(x, y))

uy(x, y) = G(x, y, u(x, y))

so that integral surfaces correspond exactly to solutions.

3. This is cool because?

Rephrasing a question is only useful if it opens up new methods of solution. There are
very powerful techniques, but for now let’s see how we can use one of the basic tools of
geometry, the Frobenius Theorem.

Theorem (Frobenius, EDS version). Let (M, I) be an EDS so that I = 〈I1〉alg (“I
is generated algebraically by 1 forms”) and dim I1|TpM is a constant r independent of
each p ∈M . Then each point of M has local coordinates x = (x1, . . . , xn+r) on U so that
I|U = 〈dxn+1, . . . , dxn+r〉.

This is the same as the standard Frobenius theorem, and says that the n-dimensional
integral manifolds in these coordinates (locally) are just those with xn+1 = c1, . . . , xn+r =
cr for some constants.

Example. We can immediately apply this to the PDE above, (R3, I) with I = 〈dz − Fdx−Gdy〉.
In this case the differential ideal I is generated algebraically by ζ = dz−Fdx−Gdy exactly
if ζ ∧ dζ = 0. But it is straightforward to calculate that

ζ ∧ dζ = (Fy −Gx +GFz − FGz)dx ∧ dy ∧ dz.
So, by Frobenious, if (Fy − Gx + GFz − FGz) = 0 then for each (x0, y0, z0) there are
coordinates so that the integral surface z = z0 is the unique solution through (x0, y0, z0).

4. Heavy machinery

To deal with more difficult problems it is necessary to develop some machinery. The
basic strategy is to look at ‘local’ solutions to our EDS and ask if they glue together to
give an honest solution.

Given an EDS (E, I), an n-dimensional subspace E ⊂ TxM is an integral element of
I if φ|E = 0 for each φ ∈ I. For fixed n we will call the set of these Vn(I), which is a
closed subset of the Grassmanian bundle Gn(TM) over M .

To construct integral manifolds we often start with an integral manifold of dimension
n and then try to extend it to an integral manifold of dimension n+ 1. To facilitate this,

Definition. For an integral element E ∈ Vk(I) and a basis e1, . . . , ek of E ⊂ TxM we
define the polar space (of extensions) by

H(E) = {v ∈ Tx : η(v, e1, . . . , ek) = 0,∀η ∈ I ∩ Ωk+1(M)}

Notice that finding the polar space at a point is a matter of linear algebra. In fact,
often all that matters is the dimension of these spaces. Given an E ∈ Vk(I), an integral
element in TxM , define the integer c(E) = dim(TxM)− dim(H(E)). We have

Theorem (Cartan’s Test). Consider a real analytic EDS (M, I) and an integral flag
(0) = E0 ⊂ E1 ⊂ . . . ⊂ En so that Ei ∈ Vi(I). If Vn(I) is a smooth manifold in a
neighborhood of En, of codimension

c(E0) + c(E1) + . . .+ c(En−1)



then there is a real analytic n-dimensional integral manifold P ⊂ M passing through x
and so that TxP = En.

5. The orthonormal frame bundle on R3

To set up my final example, I want to make a quick digression to explain the (special)
orthonormal frame bundle F on R3. In short, this is the bundle over R3 with fiber at each
point p given by the set of orthonormal frames in TpR3 which agree with the orientation of
R3, which is to say that a point in F takes the form (x, e1, e2, e3) with the ei a positively
oriented orthonormal basis of TxR3. To see what this looks like, notice that SO(3,R)
acts freely and transitively on each fiber, so Fp is diffeomorphic to SO(3). In fact it is
not hard to see that F is naturally isomorphic to

ASO(3) =

{
A ∈ GL(4,R) : A =

(
1 0
t R

)
, t ∈ R3, R ∈ SO(3)

}
.

To see this, we simply identify the point (x, e1, e2, e3) ∈ F with the element

g =

(
1 0 0 0
x e1 e2 e3

)
∈ ASO(3)

and vice versa.
The group ASO(3) is a semidirect product of R3 and SO(3), so we see that R3 is the

homogeneous space ASO(3)/SO(3). The fact that we can identify the orthonormal frame
bundle with a Lie group is fantastic news because it gives us a canonical basis for the
cotangent bundle via the Maurer-Cartan form.

Definition. For a Lie group G with Lie algebra g there is a unique left-invariant g
valued 1-form on G whose restriction to TeG(= g) is the identity4. This form is called
the Maurer-Cartan form of G.

Exercise. For a matrix Lie group with embedding g : G → GL(n) the Maurer-Cartan
form is simply g−1dg

Example. For the group ASO(3) the Maurer-Cartan form ω = g−1dg takes the form

ω =


0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 −ω1
2 0 ω2

3

ω3 −ω1
3 −ω2

3 0

 ∈ R3 ⊕ so(3).

By solving for dg we have

d

(
1 0 0 0
x e1 e2 e3

)
=

(
1 0 0 0
x e1 e2 e3

)
0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 −ω1
2 0 ω2

3

ω3 −ω1
3 −ω2

3 0


4This may seem like a mysterious definition if you have not seen it before, but the crux of it is

that we have an obvious identification between the tangent space at the identity and the vector space
g. Furthermore, we can push this all around G by left translation to get identifications between each
tangent space of G and g. Incidentally, this shows that the tangent bundle of any Lie group is the trivial
bundle.



so that for example dx = e1ω
1 + e2ω

2 + e3ω
3 and de3 = e1ω

1
3 + e2ω

2
3. Even better, by

taking the derivative of ω = g−1dg we see5 that dω = −ω ∧ ω, or in our case

d


0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 −ω1
2 0 ω2

3

ω3 −ω1
3 −ω2

3 0

 = −


0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 −ω1
2 0 ω2

3

ω3 −ω1
3 −ω2

3 0

 ∧


0 0 0 0
ω1 0 ω1

2 ω1
3

ω2 −ω1
2 0 ω2

3

ω3 −ω1
3 −ω2

3 0

 .

As mentioned above, the ωi, ωi
j are a basis of the 1-forms on ASO(3).

6. Isometric surfaces in R3

Suppose we have a Riemannian surface S. We fix at each point p an orthonormal
framing v1,v2 ∈ TpS and for later convenience call its dual coframing η1, η2. Now, for
an isometric embedding f : S → R3 we have a natural lift

f̂ : S → ASO(3)

p 7→
(

1 0 0 0
f(p) f ′(v1) f ′(v2) f ′(v1)× f ′(v2)

)
=

(
1 0 0 0
x e1 e2 e3

)
.

Notice that this lift is chosen so that e1 and e2 span the tangent plane at each point of
S and e3 is the normal to S. As a consequence we have

e1η
1 + e2η

2 = df = f ∗dx = e1f
∗ω1 + e2f

∗ω2 + e3f
∗ω3

which implies that η1 = f ∗ω1, η2 = f ∗ω2 and f ∗ω3 = 0. Conversely, if we have a map
f̂ : S → ASO(3) so that f ∗ω1∧f ∗ω2 6= 0,6 and 0 = η1−f ∗ω1 = η2−f ∗ω2 = f ∗ω3 then its
projection to R3 will be an isometric embedding. In other words, solutions to the exterior
differential system (M = S × ASO(3), I = 〈ω3, η1 − ω1, η2 − ω2〉) with η1 ∧ η2 6= 0 will
be the graphs of isometric immersions of S into R3. So the question is, does this have
solutions? We will use Cartan’s test to answer this.

To answer this it will be necessary to find a set of forms which generate I algebraically.
Recall that for an orthonormal coframing η1, η2 there is a form η12 so that dη1 = −η12 ∧ η2
and dη2 = η12 ∧ η1. This form also satisfies dη12 = Kη1 ∧ η2 where K is the curvature of
the metric.

From this we see that

d(η1 − ω1) = −η12 ∧ η2 + ω1
2 ∧ ω2 ≡ (ω1

2 − η12) ∧ ω2 mod I

and

d(η2 − ω2) = η12 ∧ η1 − ω1
2 ∧ ω1 ≡ −(ω1

2 − η12) ∧ ω1 mod I
are in I. However, we have assumed that ω1 and ω2 form a basis of the cotangent bundle
of an integral surface, so solutions to I will also have ω1

2 − η12 = 0. In light of this,
we consider the new EDS (M, I ′ = 〈ω3, η1 − ω1, η2 − ω2, ω1

2 − η12〉), whose solutions also
correspond to isometric embeddings of S.7

5Hint: d(g−1) = −g−1dg g−1.
6That is to say, the image of S is transverse to the fiber, so that π ◦ f is an immersion.
7It is not obvious from what I have said why it is necessary to expand our ideal. The original system

(M, I) is not involutive, which to us means that Cartan’s test would have failed to guarantee us integral
surfaces. Our new ideal I ′ satisfies the hypothesis of Cartan’s test, so we see that I ′ and thus I does
indeed have integral surfaces. This is a general phenomenon, wherein we can prolong a system to get a
new one which shares the same solutions but is furthermore involutive.



Our new ideal I ′ is generated algebraically by

θ0 = ω3(1)

θ1 = ω1 − η1(2)

θ2 = ω2 − η2(3)

θ3 = ω1
2 − η12(4)

dθ0 = ω1
3 ∧ ω1 + ω2

3 ∧ ω2(5)

dθ3 = ω1
3 ∧ ω2

3 −Kω1 ∧ ω2(6)

To find the codimension of V2(I ′) in G2(TM) we parameterize the open set of planes in
TpM with η1 ∧ η2 6= 0 by the real numbers pai , hij, where

(7) ωa = pa1η
1 + pa2η

2

and

ω1
2 = p41η

1 + p42η
2(8)

ω1
3 = h11η

1 + h12η
2(9)

ω2
3 = h21η

1 + h22η
2.(10)

The equations (1)-(4) then determine all 8 of the pai and (5) and (6) give 2 independent
relations between the remainder,8 so that V2(I ′) has codimension 10.

On the other hand, given an integral element E ∈ V2(I ′) defined by the equations
(7) - (10) let us fix an integral flag (0) ⊂ E1 ⊂ E where E1 is spanned by an element
e. It follows from the definition that H(E0) has codimension equal to the number of
independent 1 forms in I ′, so regardless of our choice of flag, c0 = 4. The space H(E1) is
the set of vectors v which annihilate the four 1-forms θi,

9 as well as the 1-forms

ie(ω
1
3 ∧ ω1 + ω2

3 ∧ ω2) = ω1
3(e)ω1+ ω2

3(e)ω2−ω1(e)ω1
3 − ω2(e)ω2

3

ie(ω
1
3 ∧ ω2

3 −Kω1 ∧ ω2) = Kω2(e)ω1−Kω1(e)ω2−ω2
3(e)ω1

3 + ω1
3(e)ω2

3.

Provided that either h12 6= 0 or h11 + h22 6= 0 these two forms will be independent of
each other and the θi, so H(E1) has codimension 6. In this case c0 + c1 = 4 + 6 = 10 =
codim(V2(I ′)), so we see by Cartan’s test that there is an integral manifold to I ′ tangent
to E. However, we can always find an integral element E where h12 6= 0 or h11 +h22 6= 0,
and then this will hold in a neighborhood. This concludes the proof that any real analytic
Riemannian surface can be isometrically embedded in R3.

8In fact, (5) is h12 = h21, reflecting the fact that the matrix (hij) is actually the second fundamental
form. The equation (6) is h11h22 − h212 = K, the Gauss equation.

9The astute observer may ask why the 1-forms matter since the definition of H(E1) only depends on
the 2-forms in I ′. The answer is that I ′ is an ideal. For example, if α is a one form on which α(e) = 1
then v ∈ H(E1) requires θ ∧ α(v, e) = θ(v)α(e)− θ(e)α(v) = θ(v), where we use the fact that θ(e) = 0.


